Identifying algorithm in program code based on structural features using CNN classification model

نویسندگان

چکیده

Abstract In software, an algorithm is a well-organized sequence of actions that provides the optimal way to complete task. Algorithmic thinking also essential break-down problem and conceptualize solutions in some steps. The proper selection pivotal improve computational performance software productivity as well programming learning. That is, determining suitable from given code widely relevant engineering education. However, both humans machines find it difficult identify algorithms without any meta-information. This study aims propose program classification model uses convolutional neural network (CNN) classify codes based on algorithm. First, are transformed into structural features (SFs). Second, SFs one-hot binary matrix using several procedures. Third, different structures hyperparameters CNN fine-tuned best for To do so, 61,614 real-world types collected online judge system used train, validate, evaluate model. Finally, experimental results show proposed can with high percentage accuracy. average precision, recall, F-measure scores 95.65%, 95.85%, 95.70%, respectively, indicating outperforms other baseline models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-Class Mammogram Classification Based on Descriptive CNN Features

In this paper, a novel classification technique for large data set of mammograms using a deep learning method is proposed. The proposed model targets a three-class classification study (normal, malignant, and benign cases). In our model we have presented two methods, namely, convolutional neural network-discrete wavelet (CNN-DW) and convolutional neural network-curvelet transform (CNN-CT). An a...

متن کامل

mortality forecasting based on lee-carter model

over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...

15 صفحه اول

3D Classification of Urban Features Based on Integration of Structural and Spectral Information from UAV Imagery

Three-dimensional classification of urban features is one of the important tools for urban management and the basis of many analyzes in photogrammetry and remote sensing. Therefore, it is applied in many applications such as planning, urban management and disaster management. In this study, dense point clouds extracted from dense image matching is applied for classification in urban areas. Appl...

متن کامل

Machine Learning Based Source Code Classification Using Syntax Oriented Features

As of today the programming language of the vast majority of the published source code is manually specified or programmatically assigned based on the sole file extension. In this paper we show that the source code programming language identification task can be fully automated using machine learning techniques. We first define the criteria that a production-level automatic programming language...

متن کامل

Body Mass Index Classification based on Facial Features using Machine Learning Algorithms for utilizing in Telemedicine

Background and Objectives: Due to the impact of controlling BMI on life, BMI classification based on facial features can be used for developing Telemedicine systems and eliminating the limitations of measuring tools, especially for paralyzed people. So that physicians can help people online during the Covid-19 pandemic. Method: In this study, new features and some previous work features were e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Intelligence

سال: 2022

ISSN: ['0924-669X', '1573-7497']

DOI: https://doi.org/10.1007/s10489-022-04078-y